职称:副教授
电子邮箱:sentaochen@stu.edu.cn
英文主页:https://sentaochen.github.io/
个人简介
陈森涛,副教授,硕士生导师,2020年博士毕业于华南理工大学软件学院。 同年,进入汕头大学计算机科学与技术系任教,入选汕头大学卓越人才计划:优秀人才。
研究兴趣为统计机器学习(Statistical Machine Learning)与迁移学习(Transfer Learning),包括领域自适应(Domain Adaptation), 领域泛化(Domain Generalization)等子问题的算法设计,以及算法在计算机视觉、自然语言处理、生物医学等领域上的应用。研究成果发表在 Pattern Recognition, Neural Networks, Information Sciences, IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Image Processing, IEEE Transactions on Multimedia等机器学习或计算机视觉的国际主流学术期刊。研究成果的主要学术贡献:1. 提出联合分布对齐的核心思想,通过联合分布对齐,联合-积分布对齐,加权联合分布对齐等具体方式,来实现这个思想,从而在理论上、算法上,较好地解决迁移学习中联合分布不匹配的本质性问题。2. 提出统计距离估计的基础技术,通过随机样本直接估计出概率分布函数之间的距离。各算法的Python/Pytorch实现,请见Github仓库:https://github.com/sentaochen
科研项目
(1)领域自适应的联合分布适配算法研究,国家自然科学基金青年基金项目, 2022.01-2024.12,主持。
(2)领域泛化的领域对齐算法研究,广东省自然科学基金面上基金项目, 2023.01-2025.12,主持。
(3)非稳态环境下的监督学习算法研究,汕头大学卓越人才科研启动基金,主持。
科研论文
(1)Sentao Chen(第一作者兼通讯作者), Ping Xuan, and Zhifeng Hao, Joint Distribution Weighted Alignment for Multi-Source Domain Adaptation via Kernel Relative Entropy Estimation, IEEE Transactions on Multimedia, 2025 (SCI: 一区;CCF: B类) 论文,Pytorch代码,视频讲解请见Github仓库:https://github.com/sentaochen/Joint-Distribution-Weighted-Alignment
(2)Sentao Chen(独立作者), Joint Weight Optimization for Partial Domain Adaptation via Kernel Statistical Distance Estimation, Neural Networks, 2024 (SCI: 一区;CCF: B类) 论文,Pytorch代码,视频讲解请见Github仓库:https://github.com/sentaochen/Joint-Weight-Optimation
(3)Lisheng Wen(研究生), Sentao Chen(通讯作者), Zijie Hong, Lin Zheng, Maximum Likelihood Weight Estimation for Partial Domain Adaptation, Information Sciences, 2024 (SCI: 一区;CCF: B类) 论文,Pytorch代码,视频讲解请见Github仓库:https://github.com/sentaochen/Maximum-Likelihood-Weight-Estimation
(4)Sentao Chen(独立作者), Multi-Source Domain Adaptation with Mixture of Joint Distributions, Pattern Recognition, 2024 (SCI: 一区;CCF: B类) 论文,Pytorch代码请见Github仓库:https://github.com/sentaochen/Mixture-of-Joint-Distributions
(5)Lisheng Wen(研究生), Sentao Chen(通讯作者), Mengying Xie, Cheng Liu, and Lin Zheng, Training Multi-Source Domain Adaptation Network by Mutual Information Estimation and Minimization, Neural Networks, 2023 (SCI: 一区;CCF: B类) 论文,Pytorch代码,视频讲解请见Github仓库:https://github.com/sentaochen/Mutual-Information-Estimation-and-Minimization
(6)Sentao Chen(独立作者), Decomposed Adversarial Domain Generalization, Knowledge-Based Systems, 2023 (SCI: 一区;CCF: C类) 论文,Pytorch代码请见Github仓库:https://github.com/sentaochen/Decomposed-Adversarial-Domain-Generalization
(7)Sentao Chen(第一作者兼通讯作者), Lin Zheng, and Hanrui Wu, Riemannian Representation Learning for Multi-Source Domain Adaptation, Pattern Recognition, 2023 (SCI: 一区;CCF: B类) 论文,Pytorch代码请见Github仓库:https://github.com/sentaochen/Riemannian-Representation-Learning
(8)Sentao Chen(第一作者兼通讯作者) and Zijie Hong, Domain Generalization by Distribution Estimation, International Journal of Machine Learning and Cybernetics,2023 (SCI: 三区;CCF: C类) 论文,Pytorch代码请见Github仓库:https://github.com/sentaochen/Domain-Generalization-by-Distribution-Estimation
(9)Sentao Chen(第一作者兼通讯作者) and Liang Chen, Joint-Product Representation Learning for Domain Generalization in Classification and Regression, Neural Computing and Applications, 2023 (SCI: 三区;CCF: C类)
(10)Sentao Chen(第一作者兼通讯作者), Lei Wang, Zijie Hong, and Xiaowei Yang, Domain Generalization by Joint-Product Distribution Alignment, Pattern Recognition, 2022 (SCI: 一区;CCF: B类) 论文,Pytorch代码请见Github仓库:https://github.com/sentaochen/Joint-Product-Distribution-Alignment
(11)Sentao Chen(第一作者兼通讯作者), Zijie Hong, Mehrtash Harandi, and Xiaowei Yang, Domain Neural Adaptation, IEEE Transactions on Neural Networks and Learning Systems, 2022 (SCI: 一区;CCF: B类) 论文,Pytorch代码请见Github仓库:https://github.com/sentaochen/Domain-Neural-Adaptation
(12)Sentao Chen(第一作者兼通讯作者), Hanrui Wu, and Cheng Liu, Domain Invariant and Agnostic Adaptation, Knowledge-Based Systems, 2021. (SCI: 一区;CCF: C类)
(13)Sentao Chen(第一作者兼通讯作者), Mehrtash Harandi, Xiaona Jin, and Xiaowei Yang*, Domain Adaptation by Joint Distribution Invariant Projections, IEEE Transactions on Image Processing, 2020 (SCI: 一区;CCF: A类) 论文,Python代码请见Github仓库:https://github.com/sentaochen/Joint-Distribution-Invariant-Projections
(14)Xiaona Jin(研究生), Xiaowei Yang, Bo Fu, and Sentao Chen(通讯作者), Joint Distribution Matching Embedding for Unsupervised Domain Adaptation, Neurocomputing, 2020 (SCI: 二区;CCF: C类) 论文,Python代码请见Github仓库:https://github.com/sentaochen/Joint-Distribution-Matching-Embedding
(15)Sentao Chen(第一作者兼通讯作者), Mehrtash Harandi, Xiaona Jin, and Xiaowei Yang*, Semi-supervised Domain Adaptation via Asymmetric Joint Distribution Matching, IEEE Transactions on Neural Networks and Learning Systems, 2020 (SCI: 一区;CCF: B类)
(16)Sentao Chen(第一作者兼通讯作者), Le Han, Xiaolan Liu, Zongyao He, and Xiaowei Yang*, Subspace Distribution Adaptation Frameworks for Domain Adaptation, IEEE Transactions on Neural Networks and Learning Systems, 2020 (SCI: 一区;CCF: B类) 论文,Python代码请见Github仓库:https://github.com/sentaochen/Subspace-Distribution-Adaptation-Frameworks
(17)Sentao Chen(第一作者兼通讯作者) and Xiaowei Yang, Tailoring Density Ratio Weight for Covariate Shift Adaptation, Neurocomputing, 2019 (SCI: 二区;CCF: C类)
指导学生
(1)温力胜,2021级硕士生,研究内容: 广义领域自适应算法研究(多源领域自适应、部分领域自适应、开集领域自适应)
(2)彭侠彬,2023级硕士生,研究内容: 开集领域自适应算法研究(开集领域自适应、多源开集领域自适应)
硕士生毕业去向
(1)温力胜,2024届硕士生,重庆大学 微电子与通信工程学院,攻读博士学位
主讲课程
(1)《统计学习方法》
(2)《研究方法与创新》