汪飞博士,2019年毕业于中山大学数据科学与计算机学院,获工学博士学位;2019年起在汕头大学工学院计算机系任教。主要研究方向为生成式人工智能、计算机视觉、计算机图形学,包括三维重建,图像分割,医学图像处理,流体模拟仿真等。担任多个国内外期刊的审稿人,并在国内外权威期刊与会议上发表代表性论文多篇。
邮箱:wangfei@stu.edu.cn
论文
1、Wang Feng,Fei Wang(通讯作者), Zhang Weiguo, Xu Songhua, Lai Zhongping. 2023. A novel machine learning fingerprinting method using sparse representation for provenance detection in delta sediments. Catena, 227, 107095. (2023)(中科院一区Top)
2、Fei Wang(汪飞), Songhua Xu, Dazhi Jiang, Baoquan Zhao, Xiaonan Luo:Particle hydrodynamic simulation of thrombus formation using velocity decay factor.Computer Methods and Programs in Biomedicine.207: 106173 (2021)(中科院二区)
5、Fei Wang(汪飞), Hefeng Wu, Hao Cai , Xiaonan Luo and Teng Zhou. SketchBodyNet: A Sketch-Driven Multi-faceted Decoder Network for 3D Human Reconstruction. Pacific Graphics 2023.(CCF-B类会议)
6、Fei Wang(汪飞), Shujin Lin, Hanhui Li, Hefeng Wu, Tie Cai, Xiaonan Luo, Ruomei Wang: Multi-column point-CNN for sketch segmentation. Neurocomputing 392: 50-59 (2020)(中科院二区)
7、Fei Wang(汪飞), Shujin Lin, Xiaonan Luo, Xiangjian He. SPFusionNet: Sketch Segmentation Using Multi-modal Data Fusion(2019 IEEE International Conference on Multimedia and Expo)(CCF-B类会议)
8、Teng Zhou, Haowen Dou, Jie Tan, Youyi Song, Fei Wang, Jiaqi Wang, Small dataset solves big problem: An outlier-insensitive binary classifier for inhibitory potency prediction, Knowledge-Based Systems, Volume 251, 2022.(中科院一区)
9、Teng Zhou, Haowen Dou, Jie Tan, Youyi Song,Fei Wang(汪飞), Jiaqi Wang: Small dataset solves big problem: An outlier-insensitive binary classifier for inhibitory potency prediction. Knowledge-Based Systems. 251: 109242 (2022) (中科院一区)
10、Haowen Dou, Jie Tan, Huiling Wei,Fei Wang(汪飞), Jinzhu Yang, X.-G. Ma, Jiaqi Wang, Teng Zhou:Transfer inhibitory potency prediction to binary classification: A model only needs a small training set. Computer Methods and Programs in Biomedicine. 215: 106633 (2022) (中科院二区)
11、Fei Wang(汪飞), Shujin Lin, Hefeng Wu, Xiaonan Luo. Data-driven method for sketch-based 3D shape retrieval based on user similar draw-style recommendation[C]. SIGGRAPH Asia Posters. ACM, 2016.(CCF-A类会议Poster)
12、Fei Wang(汪飞),Shujin Lin, Ruomei Wang, Xiaonan Luo. Improving incompressible SPH simulation efficiency by integrating density-invariant and divergence-free conditions. SIGGRAPH Posters. ACM, 2018.(CCF-A类会议Poster)
13、Fei Wang(汪飞), Shujin Lin, Xiaonan Luo, Hefeng Wu, Ruomei Wang, Fang Zhou.A Data-Driven Approach for Sketch-Based 3D Shape Retrieval via Similar Drawing-Style Recommendation[J]. Computer Graphics Forum, 2017, 36(7):157-166.(CCF-B期刊)
14、Fei Wang(汪飞), Shujin Lin, Xiaonan Luo, Ruomei Wang. Coupling Computation of Density-Invariant and Divergence-Free for Improving Incompressible SPH Efficiency. IEEE Access(中科院二区)
15、汪飞,李伟鸿,赵宝全,罗笑南。动脉粥样硬化斑块生成的高效流固耦合CISPH模拟方法《浙江大学学报(理学版)》2023.(中文核心期刊)
16、陈旭游,王若梅,林淑金,汪飞,罗笑南。基于Gillesple方法的血栓模拟方法《计算机辅助设计与图形学学报》(中文核心期刊)
17、Fei Wang(汪飞),Shujin Lin,Xiaonan Luo,Baoquan Zhao,Ruomei Wang,Query-by-Sketch Image Retrieval Using Homogeneous Painting Style Characterization,(2019 Journal of Electronic Imaging(中科院四区)
18、Fei Wang(汪飞), Yu Yang, Baoquan Zhao, Dazhi Jiang, Siwei Chen, Jianqiang Sheng: Reconstructing 3D Model from Single-View Sketch with Deep Neural Network. Wireless Communications and Mobile Computing. 2021: 5577530:1-5577530:9 (2021).(JCR四区)
19、Junkun Jian, Ruomei Wang, Shujin Lin,Fei Wang(汪飞). SFSegNet: Parse Freehand Sketches using Deep Fully Convolutional Networks (International Joint Conference on Neural Networks, IJCNN)(CCF-C类会议)
科研项目
1.广东省自然科学基金项目,保密度-无散度耦合流体模拟方法及其在血栓生理特性问题中的应用, 2022A1515011978。
2.广东省自然科学基金项目,基于手绘草图的可视媒体资源交互和合成的方法研究, 2021A1515012302。
3.广东省普通高校重点领域专项,基于SMPL和草图语义描述的三维人体重建方法研究,2022ZDZX1007。
4.广东省科技创新战略专项,基于手绘的三维几何建模和编辑研究,STKJ202209003。
5.国家自然科学基金青年项目,纠缠破坏信道与量子测量的代数结构与几何特,11201329。
6.广东省科技创新战略专项,面向产品设计的草图式三维造型技术研究,STKJ2023069
7.广东省普通高校青年创新人才项目,基于光滑流体动力学的血液生化反应的模拟方法研究, 2019GKQNCX120。
8.广东省自然科学基金项目,自适应多任务学习算法研究及其在癌症数据分析中的应用, 2022A1515010434,。
9.广东省自然科学基金项目,基于动力学特征城市功能分区与路网融合的交通流预测研究, 2022A1515011590。
10.汕头大学科研启动经费项目,深度神经网络的三维模型生成与优化方法研究,NTF20011。
11.国家自然科学基金,面上项目,基于手绘个性化偏差矫正和风格识别的图形图像检索研究, 61572531。