刘诚,硕士生导师,2018年7月博士毕业于香港城市大学。2019入职汕头大学并入选汕头大学卓越人才计划,主要研究方向为机器学习算法:多视图学习,多任务学习,生存分析算法等,同时运用人工智能算法解决与临床癌症相关的生物信息学应用问题。 期间主持了5 个科研项目,包含国家自然科学基金青年基金项目,广东省自然科学基金面上项目,广东省教育厅青年创新人才项目,中国科学技术大学苏州高等研究院横向项目,汕头大学卓越人才科研启动基金(100万)。 在研究领域,作为第一作者(含五篇通讯作者)的身份在SCI期刊/CCF推荐会议上发表了16篇论文, 一作和通讯总影响因子约110,h-index 15,i-index 21。发表的论文中包括8篇中科院一区期刊/CCF A在内IEEE Transactions系列顶级期刊上,以及6篇中科院二区/CCF B论文。其中包含一篇中科院一区(影响因子10.04)高被引论文。
主持5个项目:
1. 面向多组学癌症数据的多视图生存分析算法的研究, 国家自然科学基金项目, 青年基金项目(2022-2024),30万, 主持
2. 自适应多任务学习算法研究及其在癌症数据分析中的应用,广东省自然科学基金项目面上项目(2022-2024), 10万, 主持
3. 结构化稀疏模型及其生物数据的应用, 广东省教育厅青年创新人才项目,5万, 主持
4. 基于组学数据方面的智能模型的快速实现应用开发服务, 中国科学技术大学苏州高等研究院(横向),10万, 主持
5. 基于正则化结构化稀疏模型及其医疗数据应用,汕头大学卓越人才科研启动基金,100万, 主持
%3CmxGraphModel%3E%3Croot%3E%3CmxCell%20id%3D%220%22%2F%3E%3CmxCell%20id%3D%221%22%20parent%3D%220%22%2F%3E%3CmxCell%20id%3D%222%22%20value%3D%22%EF%BC%88%E4%B8%80%E4%BD%9C%EF%BC%89Cheng%20Liu%20et%20al.%3A%26amp%3Bnbsp%3BSelf-Supervised%20Graph%20Completion%20for%20Incomplete%20Multi-View%20Clustering.%20IEEE%20Transactions%20on%20Knowledge%20and%20Data%20Engineering%20(2023)%26amp%3Bnbsp%3B%20%E4%B8%AD%E7%A7%91%E9%99%A2%E4%BA%8C%E5%8C%BA%EF%BC%8Ctop%E6%9C%9F%E5%88%8A%EF%BC%8C%E5%BD%B1%E5%93%8D%E5%9B%A0%E5%AD%90%208.9%26amp%3Bnbsp%3B%22%20style%3D%22text%3BwhiteSpace%3Dwrap%3Bhtml%3D1%3B%22%20vertex%3D%221%22%20parent%3D%221%22%3E%3CmxGeometry%20x%3D%22160%22%20y%3D%22130%22%20width%3D%22560%22%20height%3D%2250%22%20as%3D%22geometry%22%2F%3E%3C%2FmxCell%3E%3CmxCell%20id%3D%223%22%20value%3D%22%EF%BC%88%E4%B8%80%E4%BD%9C%EF%BC%89%20Cheng%20Liu%20et%20al.%3A%20Self-Guided%20Graph%20Partial%20Propagation%20for%20Incomplete%20Multi-View%20Clustering.%26amp%3Bnbsp%3B%20IEEE%20Transactions%20on%20Neural%20Networks%20and%20Learning%20Systems%20(2023)%20%E4%B8%AD%E7%A7%91%E9%99%A2%E4%B8%80%E5%8C%BA%EF%BC%8Ctop%E9%A1%B6%E5%88%8A%EF%BC%8C%E5%BD%B1%E5%93%8D%E5%9B%A0%E5%AD%90%2010.4%22%20style%3D%22text%3BwhiteSpace%3Dwrap%3Bhtml%3D1%3B%22%20vertex%3D%221%22%20parent%3D%221%22%3E%3CmxGeometry%20x%3D%22160%22%20y%3D%22180%22%20width%3D%22560%22%20height%3D%2250%22%20as%3D%22geometry%22%2F%3E%3C%2FmxCell%3E%3CmxCell%20id%3D%224%22%20value%3D%22%EF%BC%88%E4%B8%80%E4%BD%9C%EF%BC%89%20Cheng%20Liu%20et%20al.%3A%20Multitask%20Feature%20Selection%20by%20Graph-Clustered%20Feature%20Sharing.%20IEEE%20Transactions%20on%20Cybernetics%20(2020)%20%E4%B8%AD%E7%A7%91%E9%99%A2%E4%B8%80%E5%8C%BA%EF%BC%8Ctop%E9%A1%B6%E5%88%8A%EF%BC%8C%E5%BD%B1%E5%93%8D%E5%9B%A0%E5%AD%90%2011.8%22%20style%3D%22text%3BwhiteSpace%3Dwrap%3Bhtml%3D1%3B%22%20vertex%3D%221%22%20parent%3D%221%22%3E%3CmxGeometry%20x%3D%22160%22%20y%3D%22280%22%20width%3D%22560%22%20height%3D%2250%22%20as%3D%22geometry%22%2F%3E%3C%2FmxCell%3E%3CmxCell%20id%3D%225%22%20value%3D%22%EF%BC%88%E4%B8%80%E4%BD%9C%EF%BC%89%20Cheng%20Liu%20et%20al.%3A%20View-Aware%20Collaborative%20Learning%20for%20Survival%20Prediction%20and%20Subgroup%20Identification.%20IEEE%20Transactions%20on%20Biomedical%20and%20Engineering%20(2022)%20%E4%B8%AD%E7%A7%91%E9%99%A2%E4%BA%8C%E5%8C%BA%EF%BC%8C%E5%BD%B1%E5%93%8D%E5%9B%A0%E5%AD%90%204.75%22%20style%3D%22text%3BwhiteSpace%3Dwrap%3Bhtml%3D1%3B%22%20vertex%3D%221%22%20parent%3D%221%22%3E%3CmxGeometry%20x%3D%22160%22%20y%3D%22480%22%20width%3D%22560%22%20height%3D%2250%22%20as%3D%22geometry%22%2F%3E%3C%2FmxCell%3E%3CmxCell%20id%3D%226%22%20value%3D%22%EF%BC%88%E4%B8%80%E4%BD%9C%EF%BC%89Cheng%20Liu%20et%20al.%3A%20Asymmetric%20Graph-Guided%20Multi-Task%20Survival%20Analysis%20with%20Self-Paced%20Learning.%26amp%3Bnbsp%3B%20IEEE%20Transactions%20on%20Neural%20Networks%20and%20Learning%20Systems%20(2020)%20%E4%B8%AD%E7%A7%91%E9%99%A2%E4%B8%80%E5%8C%BA%EF%BC%8Ctop%E9%A1%B6%E5%88%8A%EF%BC%8C%E5%BD%B1%E5%93%8D%E5%9B%A0%E5%AD%90%2010.4%22%20style%3D%22text%3BwhiteSpace%3Dwrap%3Bhtml%3D1%3B%22%20vertex%3D%221%22%20parent%3D%221%22%3E%3CmxGeometry%20x%3D%22160%22%20y%3D%22230%22%20width%3D%22560%22%20height%3D%2250%22%20as%3D%22geometry%22%2F%3E%3C%2FmxCell%3E%3CmxCell%20id%3D%227%22%20value%3D%22%26lt%3Bbr%20style%3D%26quot%3Bborder-color%3A%20var(--border-color)%3B%26quot%3B%26gt%3B%EF%BC%88%E4%B8%80%E4%BD%9C%EF%BC%89Cheng%20Liu%20et%20al.%20Encoding%20Sparse%20and%20Competitive%20Structures%20among%20Tasks%20in%20Multi-Task%20Learning%20(2020)%26amp%3Bnbsp%3B%26lt%3Bspan%20style%3D%26quot%3Bborder-color%3A%20var(--border-color)%3B%26quot%3B%26gt%3BPattern%20Recongtion%26lt%3B%2Fspan%26gt%3B%26lt%3Bb%20style%3D%26quot%3Bborder-color%3A%20var(--border-color)%3B%26quot%3B%26gt%3B%26amp%3Bnbsp%3B%26lt%3B%2Fb%26gt%3B%E4%B8%AD%E7%A7%91%E9%99%A2%E4%B8%80%E5%8C%BA%EF%BC%8Ctop%E9%A1%B6%E5%88%8A%EF%BC%8C%E5%BD%B1%E5%93%8D%E5%9B%A0%E5%AD%90%208.0%22%20style%3D%22text%3BwhiteSpace%3Dwrap%3Bhtml%3D1%3B%22%20vertex%3D%221%22%20parent%3D%221%22%3E%3CmxGeometry%20x%3D%22160%22%20y%3D%22310%22%20width%3D%22560%22%20height%3D%2250%22%20as%3D%22geometry%22%2F%3E%3C%2FmxCell%3E%3CmxCell%20id%3D%228%22%20value%3D%22%EF%BC%88%E4%B8%80%E4%BD%9C%EF%BC%89%20Cheng%20Liu%20et%20al.%3A%20Supervised%20graph%20clustering%20for%20cancer%20subtyping%20based%20on%20survival%20analysis%20and%20integration%20of%20multi-omic%20tumor%20data.%26amp%3Bnbsp%3BIEEE%2FACM%20Transactions%20on%20Computational%20Biology%20and%20Bioinformatics%20%E4%B8%AD%E7%A7%91%E9%99%A2%E4%BA%8C%E5%8C%BA%EF%BC%8C%E5%BD%B1%E5%93%8D%E5%9B%A0%E5%AD%90%204.5%22%20style%3D%22text%3BwhiteSpace%3Dwrap%3Bhtml%3D1%3B%22%20vertex%3D%221%22%20parent%3D%221%22%3E%3CmxGeometry%20x%3D%22160%22%20y%3D%22530%22%20width%3D%22560%22%20height%3D%2250%22%20as%3D%22geometry%22%2F%3E%3C%2FmxCell%3E%3CmxCell%20id%3D%229%22%20value%3D%22%EF%BC%88%E4%B8%80%E4%BD%9C%EF%BC%89%20Cheng%20Liu%20et%20al.%3A%26amp%3Bnbsp%3BStructured%20Penalized%20Logistic%20Regression%20for%20Gene%20Selection%20in%20Gene%20Expression%20Data%20Analysis.%20IEEE%2FACM%20Transactions%20on%20Computational%20Biology%20and%20Bioinformatics%20%E4%B8%AD%E7%A7%91%E9%99%A2%E4%BA%8C%E5%8C%BA%EF%BC%8C%E5%BD%B1%E5%93%8D%E5%9B%A0%E5%AD%90%204.5%22%20style%3D%22text%3BwhiteSpace%3Dwrap%3Bhtml%3D1%3B%22%20vertex%3D%221%22%20parent%3D%221%22%3E%3CmxGeometry%20x%3D%22160%22%20y%3D%22590%22%20width%3D%22560%22%20height%3D%2250%22%20as%3D%22geometry%22%2F%3E%3C%2FmxCell%3E%3CmxCell%20id%3D%2210%22%20value%3D%22%EF%BC%88%E5%85%B1%E5%90%8C%E9%80%9A%E8%AE%AF%EF%BC%89Semisupervised%20Multiple%20Choice%20Learning%20for%20Ensemble%20Classifification.%20IEEE%20Transactions%20on%20Cybernetics%20(2020)%26amp%3Bnbsp%3B%20%E4%B8%AD%E7%A7%91%E9%99%A2%E4%B8%80%E5%8C%BA%EF%BC%8Ctop%E9%A1%B6%E5%88%8A%EF%BC%8C%E5%BD%B1%E5%93%8D%E5%9B%A0%E5%AD%90%2011.8%22%20style%3D%22text%3BwhiteSpace%3Dwrap%3Bhtml%3D1%3B%22%20vertex%3D%221%22%20parent%3D%221%22%3E%3CmxGeometry%20x%3D%22160%22%20y%3D%22650%22%20width%3D%22560%22%20height%3D%2250%22%20as%3D%22geometry%22%2F%3E%3C%2FmxCell%3E%3CmxCell%20id%3D%2211%22%20value%3D%22%26lt%3Bbr%20style%3D%26quot%3Bborder-color%3A%20var(--border-color)%3B%26quot%3B%26gt%3B%EF%BC%88%E4%B8%80%E4%BD%9C%EF%BC%89%20Cheng%20Liu%20et%20al.%20Joint%20Subspace%20and%20Discriminative%20Learning%20for%20Self-Paced%20Domain%20Adaptation.%20Knowledge%20Based%20System%20(2021)%20%E4%B8%AD%E7%A7%91%E9%99%A2%E4%B8%80%E5%8C%BA%EF%BC%8Ctop%E9%A1%B6%E5%88%8A%EF%BC%8C%E5%BD%B1%E5%93%8D%E5%9B%A0%E5%AD%90%208.8%22%20style%3D%22text%3BwhiteSpace%3Dwrap%3Bhtml%3D1%3B%22%20vertex%3D%221%22%20parent%3D%221%22%3E%3CmxGeometry%20x%3D%22160%22%20y%3D%22360%22%20width%3D%22560%22%20height%3D%2250%22%20as%3D%22geometry%22%2F%3E%3C%2FmxCell%3E%3CmxCell%20id%3D%2212%22%20value%3D%22%EF%BC%88%E4%B8%80%E4%BD%9C%EF%BC%89%20Cheng%20Liu%20et%20al.%3A%20The%20L1%2F2%20regularization%20method%20for%20variable%20selection%20in%20the%20Cox%20model%20(2014)%20Applied%20Soft%20Computing%20%E4%B8%AD%E7%A7%91%E9%99%A2%E4%BA%8C%E5%8C%BA%EF%BC%8Ctop%E9%A1%B6%E5%88%8A%26amp%3Bnbsp%3B%E5%BD%B1%E5%93%8D%E5%9B%A0%E5%AD%90%208.7%22%20style%3D%22text%3BwhiteSpace%3Dwrap%3Bhtml%3D1%3B%22%20vertex%3D%221%22%20parent%3D%221%22%3E%3CmxGeometry%20x%3D%22160%22%20y%3D%22430%22%20width%3D%22560%22%20height%3D%2250%22%20as%3D%22geometry%22%2F%3E%3C%2FmxCell%3E%3CmxCell%20id%3D%2213%22%20value%3D%22%EF%BC%88%E5%85%B1%E5%90%8C%E9%80%9A%E8%AE%AF%EF%BC%89%20Objectivity%20meets%20subjectivity%3A%20A%20subjective%20and%20objective%20feature%20fused%20neural%20network%20for%20emotion%20recognition%EF%BC%882022%EF%BC%89Applied%20Soft%20Computing%20%E4%B8%AD%E7%A7%91%E9%99%A2%E4%BA%8C%E5%8C%BA%EF%BC%8Ctop%E9%A1%B6%E5%88%8A%26amp%3Bnbsp%3B%E5%BD%B1%E5%93%8D%E5%9B%A0%E5%AD%90%208.7%26lt%3Bbr%26gt%3B%26amp%3Bnbsp%3B%22%20style%3D%22text%3BwhiteSpace%3Dwrap%3Bhtml%3D1%3B%22%20vertex%3D%221%22%20parent%3D%221%22%3E%3CmxGeometry%20x%3D%22160%22%20y%3D%22740%22%20width%3D%22560%22%20height%3D%2250%22%20as%3D%22geometry%22%2F%3E%3C%2FmxCell%3E%3CmxCell%20id%3D%2214%22%20value%3D%22%EF%BC%88%E5%85%B1%E5%90%8C%E9%80%9A%E8%AE%AF%EF%BC%89Collaborative%20Learning-based%20Unknown-class%20Instance%20Identification%20for%20Open-set%20Domain%20Adaptation%26amp%3Bnbsp%3B%20Information%20Science%20%E4%B8%AD%E7%A7%91%E9%99%A2%E4%B8%80%E5%8C%BA%EF%BC%8Ctop%E9%A1%B6%E5%88%8A%EF%BC%8C%E5%BD%B1%E5%93%8D%E5%9B%A0%E5%AD%90%208.1%22%20style%3D%22text%3BwhiteSpace%3Dwrap%3Bhtml%3D1%3B%22%20vertex%3D%221%22%20parent%3D%221%22%3E%3CmxGeometry%20x%3D%22160%22%20y%3D%22700%22%20width%3D%22560%22%20height%3D%2250%22%20as%3D%22geometry%22%2F%3E%3C%2FmxCell%3E%3C%2Froot%3E%3C%2FmxGraphModel%31712 主要发表论文(第一作者/通讯作者): 17 篇( 8篇中科院一区期刊/CCF A; 6篇中科院二区/CCF B):
1. [IEEE TKDE] Cheng Liu*#, Si Wu, Rui Li, Dazhi Jiang, Hau-San Wong: Self-Supervised Graph Completion for Incomplete Multi-View Clustering. IEEE Transactions on Knowledge and Data Engineering (2023) [CCF A] [中科院2区] , top期刊 (中科院分区定义),影响因子 8.9
2. [IEEE TNNLS] Cheng Liu*#, Rui Li, Hangjun Che, Si Wu, Dazhi Jiang, Zhiwen Yu and Hau-San Wong: Self-Guided Graph Partial Propagation for Incomplete Multi-View Clustering. IEEE Transactions on Neural Networks and Learning Systems (2023) [CCF B] [中科院1区] top顶刊 (中科院分区定义),影响因子 10.4.
3. [IEEE TNNLS] Cheng Liu*#, Wenming Cao, Si Wu, Wenjun Shen, Dazhi Jiang, Zhiwen Yu, Hau-San Wong: Asymmetric Graph-Guided Multi-Task Survival Analysis with Self-Paced Learning. IEEE Transactions on Neural Networks and Learning Systems (2020) [CCF B] [中科院1区] (ESI 高被引论文) top顶刊 (中科院分区定义),影响因子 10.4.
4. [IEEE TCYB] Cheng Liu*#, Chutao Zheng, Si Wu, Zhiwen Yu, Hau-San Wong: Multitask Feature Selection by Graph-Clustered Feature Sharing. IEEE Transactions on Cybernetics 50(1): 74-86 (2020) [CCF B] [中科院1区] top顶刊 (中科院分区定义),影响因子 11.8
5. [IEEE TBME] Cheng Liu*, Si Wu, Dazhi Jiang, Zhiwen Yu, Hau-San Wong: View-Aware Collaborative Learning for Survival Prediction and Subgroup Identification. IEEE Transactions on Biomedical and Engineering (2022) [中科院工程技术2区].
6. [IEEE TCBB] Cheng Liu*,, Hau-San Wong#: Structured Penalized Logistic Regression for Gene Selection in Gene Expression Data Analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2017) [CCF B]
7. [IEEE TCBB] Cheng Liu*, Wenming Cao, Si Wu#, Wenjun Shen, Dazhi Jiang, Zhiwen Yu, Hau-San Wong: Supervised graph clustering for cancer subtyping based on survival analysis and integration of multi-omic tumor data. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2020. [CCF B]
8. [PR] Cheng Liu*, Chutao Zheng, Sheng Qian, Si Wu and Hau-San Wong: Encoding Sparse and Competitive Structures among Tasks in Multi-Task Learning. Pattern Recognition 88: 689-701 (2019).[CCF B][中科院1区], top顶刊 (中科院分区定义),影响因子 8.0
9. [KBS] Cheng Liu*, Si Wu, Wenming Cao, Wenjun Shen, Dazhi Jiang, Zhiwen Yu, Hau-San Wong: Joint Subspace and Discriminative Learning for Self-Paced Domain Adaptation. Knowledge Based System [CCF C] [中科院1区], top顶刊 (中科院分区定义),影响因子 8.8
10. [ASOC] Cheng Liu*, Yong Liang, Xin-Ze Luan, Kwong-Sak Leung, Tak-Ming Chan, Zongben Xu, Hai Zhang: The L1/2 regularization method for variable selection in the Cox model. Applied Soft Computing. (2014) [中科院2区], top顶刊 (中科院分区定义),影响因子 8.7
11. [IEEE TCYB] Jian Zhong, Xiangping Zeng, Wenming Cao, Si Wu#, Cheng Liu#, Zhiwen Yu, Hau-San Wong: Semisupervised Multiple Choice Learning for Ensemble Classifification. IEEE Transactions on Cybernetics (2020) [CCF B] [中科院1区] (共同通讯作者). top顶刊 (中科院分区定义),影响因子 11.8
12. [ASOC] Sijin Zhou, Dongmin Huang, Cheng Liu#, Dazhi Jiang#: Objectivity meets subjectivity: A subjective and objective feature fused neural network for emotion recognition. Applied Soft Computing (2022) [中科院2区] (共同通讯作者). top顶刊 (中科院分区定义),影响因子 8.7
13. [INS] Jiaxin Li, Haohong Zhou, Si Wu#, Cheng Liu#, Hau-San Wong Collaborative Learning-based Unknown-class Instance Identification for Open-set Domain Adaptation Information Science (2023). [CCF B] [中科院1区] (共同通讯作者). top顶刊 (中科院分区定义),影响因子 8.1
14. [ICONIP-2017] Cheng Liu, Wen-Ming Cao, Chutao Zheng, Hau-San Wong: Learning With Partially Shared Features in Multi-Task Learning. The 24th International Conference on Neural Information Processing ICONIP (5) 2017: 95-104 (CCF C会议)
15. [ICSI-2012] Cheng Liu, Yong Liang, Xin-Ze Luan, Kwong-Sak Leung, Tak-Ming Chan, Zongben Xu, Hai Zhang: Iterative L1/2 Regularization Algorithm for Variable Selection in the Cox Proportional Hazards Model. ICSI (2) 2012: 11-17
16. [ICME-2022] Junjie Liang (研究生), Hang Gao (研究生), Haojun Sun, Rui Li and Cheng Liu#. Reliable self-supervised information mining for deep subspace clustering. IEEE ICME 2022 (CCF B)(通讯作者)
17. [SMC-2022] Hang Gao (研究生), Yunshan Li(本科生)and Cheng Liu#. Progressive Deep Subspace Clustering based on Sample Reliability. IEEE SMC 2022 (CCF C)(通讯作者)
在投论文(*第一作者/#通讯作者)
[Neurocomputing] Cheng Liu*#, Sentao Chen, Lin Zheng, Dazhi Jiang: Adaptive Graph-Guided Co-Regularization for Clustered Multi-Task Learning. Neurocomputing (Revision)
[IEEE TCBB] Hang Gao (研究生), Wenjun Shen and Cheng Liu#. Collaborative Structure-Preserved Missing Data Imputation for Single-Cell RNA-Seq Clustering. IEEE/ACM Transactions on Computational Biology and Bioinformatics (Revision)(CCF B)(通讯作者/指导老师)
[CIS] Zhen Zheng (研究生), Rui Li and Cheng Liu#. Learning Robust Class-level Alignment for Cross Domain Medical Image Analysis via Dual Consistency Regularizations. Complex & Intelligent System (Submitted) [中科院计算机科学2区] (通讯作者/指导老师)
部分合作(Co-author)论文:
[IEEE TIP] Jichang Li, Si Wu, Cheng Liu, Zhiwen Yu, Hau-San Wong: Semi-Supervised Deep Coupled Ensemble Learning With Classification Landmark Exploration. IEEE Transactions on Image Processing (2020) [CCF A] [中科院1区]
[IEEE TIP] Si Wu, Shufeng Wang, Robert Laganiere, Cheng Liu, Hau-San Wong, Yong Xu: Exploiting Target Data to Learn Deep Convolutional Networks for Scene-Adapted Human Detection. IEEE Transactions on Image Processing (2018) [IEEE TIP] [CCF A] [中科院1区]
[IEEE TIP] Haohong Zhou, Mohamed Azzam, Jian Zhong, Cheng Liu, Si Wu, Hau-San Wong: Knowledge Exchange Between Domain-Adversarial and Private Networks Improves Open Set Image Classification. IEEE Transactions on Image Processing (2021) [IEEE TIP] [CCF A] [中科院1区]
[IEEE TKDE] Zhiwen Yu, Zhongfan Zhang, Wenming Cao, Cheng Liu, CL Philip Chen, Hau-San Wong: Gan-based enhanced deep subspace clustering networks [IEEE TKDE] [CCF A] [中科院2区]
[IEEE TAI] Geng Tu, Jintao Wen, Cheng Liu, Dazhi Jiang, Erik Cambria Context-and sentiment-aware networks for emotion recognition in conversation. IEEE Transactions on Artificial Intelligence.
[PR] Wenming Cao, Zhongfan Zhang, Cheng Liu, Rui Li, Qianfen Jiao, Zhiwen Yu, Hau-San Wong: Unsupervised discriminative feature learning via finding a clustering-friendly embedding space Pattern Recognition (2022) [PR][CCF B][中科院1区]
[Information Fusion] Jintao Wen, Dazhi Jiang, Geng Tu, Cheng Liu, Erik Cambria Dynamic interactive multiview memory network for emotion recognition in conversation Information Fusion [CCF B][中科院1区]
[INS] Chenglu Li, Hangjun Che, Man-Fai Leung, Cheng Liu, Zheng Yan. Robust multi-view non-negative matrix factorization with adaptive graph and diversity constraints. Information sciences. [CCF B][中科院1区]
[INS] Dazhi Jiang, Geng Tu, Donghui Jin, Kaichao Wu, Cheng Liu, Lin Zheng, Teng Zhou: A hybrid intelligent model for acute hypotensive episode prediction with large-scale data. Information Science. 546: 787-802 (2021) [CCF B] [中科院1区]
[INS] Qianfen Jiao, Jian Zhong, Cheng Liu, Si Wu, Hau-San Wong Perturbation-insensitive cross-domain image enhancement for low-quality face verification. Information Science [CCF B] [中科院1区]
[KBS] Sentao Chen, Hanrui Wu, Cheng Liu. Domain invariant and agnostic adaptation. Knowledge-Based Systems. [CCF C] [中科院1区]
[KBS] Rui Li, Cheng Liu, Dazhi Jiang: Efficient dynamic feature adaptation for cross language sentiment analysis with biased adversarial training Knowledge-Based Systems. [CCF C] [中科院1区]
[BMC Bioinformatics] Yong Liang, Cheng Liu, Xin-Ze Luan, Kwong-Sak Leung, Tak-Ming Chan, Zongben Xu, Hai Zhang: Sparse logistic regression with a L1/2 penalty for gene selection in cancer classification. BMC Bioinformatics (2013) [CCF C] [中科院3区]
[Neurocomputing] Chutao Zheng, Cheng Liu, Hau-San Wong: Corpus-based topic diffusion for short text clustering. Neurocomputing (2018) [CCF C] [中科院2区]
[Neurocomputing] Sheng Qian, Hua Liu, Cheng Liu, Si Wu, Hau-San Wong: Adaptive activation functions in convolutional neural networks. Neurocomputing 272: 204-212 (2018) [CCF C] [中科院2区]
[Neurocomputing] Dongmin Huang, Sentao Chen, Cheng Liu, Lin Zheng, Zhihang Tian, Dazhi Jiang: Differences first in asymmetric brain: A bi-hemisphere discrepancy convolutional neural network for EEG emotion recognition. Neurocomputing 448: 140-151 (2021) [中科院2区]
[CIBM] Zhihui He, Yingqing Lin, Runguo Wei, Cheng Liu, Dazhi Jiang Repulsion and attraction in searching: A hybrid algorithm based on gravitational kernel and vital few for cancer driver gene prediction. Computers in Biology and Medicine. [CCF C][中科院2区]
[Soft Computing] Xin-Ze Luan, Yong Liang, Cheng Liu, Kwong-Sak Leung, Tak-Ming Chan, Zongben Xu, Hai Zhang: A novel L1/2 regularization shooting method for Cox’s proportional hazards model. Soft Computing. (2014) [中科院3区]
[Applied Intelligence] Xuanhao Yang, Hangjun Che, Man-Fai Leung, Cheng Liu. Adaptive graph nonnegative matrix factorization with the self-paced regularization. Applied Intelligence. [中科院2区]
[MSSP] Guorong Xiao, Yunju Ma, Cheng Liu, Dazhi Jiang: A machine emotion transfer model for intelligent human-machine interaction based on group division Mechanical Systems and Signal Processing [中科院1区]
[Connection Science] Dazhi Jiang, Runguo Wei, Zhihui He, Senlin Lin, Cheng Liu, Yingqing Lin GASN: gamma distribution test for driver genes identification based on similarity networks. Connection Science [CCF C]
[IEEE SMC] Chutao Zheng, Cheng Liu, Hau-San Wong: Iterative Term Weighting for Short Text Data. IEEE International Conference on Systems, Man, and Cybernetics. IEEE, 2015:1687-1692. (Nominee of Best Paper Award) (CCF C)
[CVPR] Si Wu, Jichang Li, Cheng Liu, Zhiwen Yu, Hau-San Wong: Mutual Learning of Complementary Networks via Residual Correction for Improving Semi-Supervised Classification. CVPR 2019: 6500-6509 (CCF A)
[CVPR] Xiwen Wei, Zhen Xu, Cheng Liu, Si Wu, Zhiwen Yu, Hau San Wong: Text-Guided Unsupervised Latent Transformation for Multi-Attribute Image Manipulation CVPR 2013:(CCF A)
[IJCAI] Sheng Qian, Guanyue Li, Wen-Ming Cao, Cheng Liu, Si Wu, Hau-San Wong: Improving representation learning in autoencoders via multidimensional interpolation and dual regularizations. IJCAI 2019: 3268-3274 (CCF A)
[COLING] Rui Li, Cheng Liu, Dazhi Jiang: Asymmetric Mutual Learning for Multi-source Unsupervised Sentiment Adaptation with Dynamic Feature Network (CCF B)
[ICME] Zhongfan Zhang, Wenming Cao, Cheng Liu, Rui Li, Qianfen Jiao, Zhiwen Yu, C. L. Philip Chen, Hau-San Wong: Unsupervised Ensemble Learning Via Network Generation. ICME 2021: 1-6 (CCF B)
[ISBI] Xin-Ze Luan, Yong Liang, Cheng Liu, Zongben Xu, Hai Zhang, Kwong-Sak Leung, Tak-Ming Chan: Regularization Path for Linear Model via Net Method. ICSI (2) 2012: 414-421