• 中文
  • |
  • English
  • |
工学院
首页 /首页 /学院介绍 /最新动态 /正文

工学院机械工程系青年教师风采 | 张汉瑞

张汉瑞,博士。现任汕头大学机械工程系副教授,硕士生导师,拥有超过25年的工程实务经验。

曾在欧洲最大注塑机械制造厂-恩格尔机械担任分公司负责人,与台湾唯一上市柜的注塑机械制造厂-富强鑫精密机械合作多年。现任台湾续滢生医-研发部副总经理及浙江莲腾智能能源科技总工程师。张博士的研究领域包括注塑成型实务设计和注塑模具设计优化。发表研究论文30余篇,其中SCI收录20余篇,皆为通讯+一作,总影响因子超过60分,拥有授权专利4项。

亮点工作:

亮点工作1基于顺序近似优化和径向基底函数网络的液态硅透镜质量优化

本文亮点在于创新地将序列近似优化(SAO)与径向基函数(RBF)网络相结合,应用于液态硅胶光学透镜注塑工艺的多目标优化,有效降低了产品的残余应力和体积收缩率,提高了产品质量与生产效率,且经实验验证,为制造领域提供了新的优化思路与方法。

亮点工作2非支配排序遗传算法 (NSGA-III) 和径向基函数 (RBF) 插值在减轻智能隐形眼镜节点位移中的应用

文章亮点在于针对智能隐形眼镜注塑参数优化难题,创新性地将非支配排序遗传算法 III(NSGA-III)与径向基函数(RBF)插值相结合,有效降低了节点位移和残余应力,优化率分别达 95.60% 和 93.47% ,还探究了节点位移与线径关系,为智能隐形眼镜制造提供关键技术支撑。

亮点工作3基于 Johnson-Cook 模型的薄膜模内装饰特性的枪管膛线节点偏移检测及后续优化

文章创新性地利用聚醚醚酮(PEEK)薄膜的模内装饰(IMD)特性,结合约翰逊 - 库克模型,提出了一种检测枪管膛线节点偏移的方法,并通过多参数模拟和优化,研究了工艺参数对枪管偏移的影响,为提高枪管膛线加工精度提供了新途径 。

亮点工作4透过基于克里金法的稀疏回归偏微分方程融合来增强脑机接口以对抗注塑成型节点位移效应视图

文章创新性地将克里金预测模型与稀疏回归偏微分方程(PDEs)相结合,应用于脑机接口中犹他阵列的注塑工艺参数优化,有效降低节点位移,提升了信号传输稳定性,确定了最佳注塑参数组合,为脑机接口技术发展提供了关键技术支撑。

亮点工作5多策略差分进化算法结合拉丁超立方采样应用于脑机界面以改善节点位移的效果

文章创新性亮点在于针对脑机接口注塑过程中节点位移影响信号传输的问题,创新性地结合拉丁超立方采样(LHS)和多策略差分进化算法(MSDE),优化注塑参数,大幅降低节点位移(优化率达 95.38%),并通过电压差评估产品可靠性,为提升脑机接口性能提供新途径。

代表性成果

[1] Chang, Hanjui; Lu, Shuzhou; Sun, Yue; Lin, & Yuntao Lan, Quality optimization of liquid silicon lenses based on sequential approximation optimization and radial basis function networks, Scientific Reports, 2025, Scientific Reports, (2025) 15:4092.

[2] Chang, Hanjui; Sun, Yue; Lu, Shuzhou; Lin, Daiyao, Application of non-dominated sorting genetic algorithm (NSGA-III) and radial basis function (RBF) interpolation for mitigating node displacement in smart contact lenses, Scientific Reports, 2024, Scientific Reports, 14:29348.

[3] Hanjui Chang, Guangyi Zhang, Yue Sun, Shuzhou Lu, 2024, Barrel rifling node offset detection and subsequent optimization based on thin film in‑mold decoration characteristics of the Johnson–Cook model, Scientific Reports, 2024, Scientific Reports, 14:24410, https://doi.org/10.1038/s41598-023-47467-0. (SCI/Q1/ IF=3.8).

[4] Hanjui Chang, Yue Sun, Shuzhou Lu, Yuntao Lan, 2024, Enhancing Brain–Computer Interfaces through Kriging-Based Fusion of Sparse Regression Partial Differential Equations to Counter Injection Molding View of Node Displacement Effects, Polymers 2024, 16, 2507. https://doi.org/10.3390/polym16172507, (SCI/Q1/ IF=4.7).

[5] Chang, Hanjui; Sun, Yue; Lu, Shuzhou; Lin, Daiyao; A multistrategy differential evolution algorithm combined with Latin hypercube sampling applied to a brain–computer interface to improve the effect of node displacement, Scientific Reports,

https://doi.org/10.1038/s41598-024-69222-9. (SCI/Q1/ IF=4.3).

[6] Chang, Hanjui; Lu, Shuzhou; Sun, Yue; Zhang, Guangyi; Liquid Silicone Rubber Headlamp Lens Injection Molding Process Optimization Based on Tie Bar Elongation and NSGA III, Polymers 2023, 15, 4278. https://doi.org/10.3390/polym15214278, (SCI/Q1/ IF=5.0).

[7] Hanjui Chang, Yue Sun, Shuzhou Lu, Guangyi Zhang, 2023, Application of the NSGA-II Algorithm and Kriging Model to Optimise the Process Parameters for the Improvement of the Quality of Fresnel Lenses, Polymers 2023, 15, 3403. https://doi.org/10.3390/polym15163403, (SCI/Q1/ IF=5.0).

[8] Hanjui Chang, Yue Sun, Shuzhou Lu, Guangyi Zhang, 2023, Based on wavelet‑Lipschitz function for node detection method on armor subsequent damage optimization, The International Journal of Advanced Manufacturing Technology, doi.org/10.1007/s00170-023-11734-1. (SCI/Q2/ IF=3.40)

[9] Chang, Hanjui; Lu, Shuzhou; Sun, Yue; Zhang, Guangyi; Longshi Rao; Multi-Objective Optimization of Liquid Silica Array Lenses Based on Latin Hypercube Sampling and Constrained Generative Inverse Design Networks, Polymers 2023, 15, 499, (SCI/Q1/ IF=4.967).

[10] Chang, Hanjui; Lu, Shuzhou; Sun, Yue; Zhang, Guangyi; Longshi Rao; Optical Penetration and “Fingerprinting” Analysis of Automotive Optical Liquid Silicone Components Based onWavelet Analysis andMultiple Recognizable Performance Evaluation, Polymers, 15, 86. 2023, (SCI/Q1/ IF=4.967).

[11] Chang, Hanjui; Zhang, Guangyi; Sun, Yue; Lu, Shuzhou; A Node Detection Method Based on Johnson–Cook and Thin-Film IMD Characteristic Model Armor Damage Detection Repair and Subsequent Optimization, Polymers 14 (14), 4540, (SCI/Q1/ IF=4.967).

[12] Chang, Hanjui; Zhang, Guangyi; Sun, Yue; Lu, Shuzhou; Non-Dominant Genetic Algorithm for Multi-Objective Optimization Design of Unmanned Aerial Vehicle Shell Process, Polymers 14 (14), 2896, (SCI/Q1/ IF=4.967).


上一条:汕大工学院3名教师入选2024爱思唯尔“中国高被引学者”榜单 下一条:关于举办“汕头大学高等结构与断裂力学讲习班”的通知

关闭